
Acquiring custom OCR system with minimal
manual annotation

Jan Hula*, David Mojžı́šek, David Adamczyk, Radek Čech
Institute for Research and Applications of Fuzzy Modeling

Ostrava, Czechia
*jan.hula@osu.cz

Abstract—We describe a development of a custom OCR system,
which is designed specifically for a linguistic analysis of texts
printed during the early modern period. This analysis requires
precise detection of individual graphemes, and we, therefore,
could not apply standard approaches that transcribe whole lines
in an end-to-end fashion. We also describe our use of synthetically
generated images, which allow us to avoid manual annotation of
a large training set.

Index Terms—OCR, Synthetic Data, Historical Texts, Neural
Networks

I. OVERVIEW

Optical Character Recognition (OCR) is nowadays consid-
ered a solved problem with very little space for innovation
[1]. Still, some applications have very specific requirements
for which custom solutions are needed. Here, we focus on
a problem arising in a linguistic analysis of printed texts
from the early modern period (1500-1750). The solution to
this problem must include a precise detection of graphemes
because the analysis will deal with relative sizes of printed
graphemes and spaces between them as described in the next
section. Because we have not found an open-source system
which would fulfill our requirements, we decided to design
the system by ourselves. It follows a two-stage pipeline. The
first stage is based on a state-of-the-art model for object
detection to detect individual graphemes and in the second
stage, individual graphemes are recognized using bidirectional
LSTM [2] which recognizes every grapheme in a context in
which it appears. We solve these two stages separately. After
training the grapheme detection model, we use it to detect
thousands of instances of generic graphemes which we cut-
out and cluster using a simple K-means algorithm. We then
label these clusters and use them to pre-label training examples
for the recognition model.

As annotating bounding boxes for individual graphemes
can be a tedious task, we wanted to avoid as much of
manual annotation as possible. For this purpose, we synthesize
artificial examples of printed pages which help us to bootstrap
a labeling process with a model pre-trained on these examples.
Our methodology follows a simple principle where we train
a weaker method requiring few training examples to pre-label
training data for a stronger method. In this contribution, we
describe the whole pipeline of our solution. We believe that it
contains ideas which can generalize to similar problems.

II. MOTIVATION AND PROBLEM STATEMENT

The approach presented in this paper is motivated by needs
that have emerged in linguistics focused on the development
of the Czech orthographic system. Specifically, Voit [3] intro-
duced new explanation of the usage of orthographic variations
(such as ”uo” ∼ ”ů” / ”ú”, ”ie” ∼ ”ij” ∼ ”j” ) in 16th
century. He claims that the usage of either singlegraphic or
digraphic grapheme was caused by pragmatic factors related
to typesetting praxis. According to him, a typesetter was forced
to fulfill the following requirements: 1) to align the right
edge of the text, 2) to avoid splitting of words at the end
of the line. In other words, an option to use either longer or
shorter realizations of the grapheme was a tool for dilation or
compression of text in the line.

This explanation offers setting up several empirically
testable hypotheses. For instance, ”the higher the number of
types in the line, the higher probability of occurrence of
digraphic grapheme” or ”the higher the number of types in
the line, the lower the number of spaces in the line”. Testing
of hypotheses of this kind must be performed on a large
sample of original texts. Further, proper testing needs careful
operalization, which is not a trivial task in this case. For
instance, a width of both the grapheme and space must be
determined unambiguously. To our knowledge, up to now, only
in [4], the problem had been analyzed empirically. However,
they used the sample consisting of only four texts which were
transcribed and annotated manually. The lack of adequately
processed documents is the main obstacle for a thorough
analysis of this phenomenon, and this could be solved by
automatization of the annotation process.

In other words, we want to prepare an annotated dataset (to-
gether with the annotation tool) for further linguistic analysis.
This analysis should confirm or disprove the hypothesis that
changes in written Czech language were driven by technolog-
ical limitations and needs in typesetting practice.

III. DESCRIPTION OF THE DATA

In this section, we briefly describe our data and their
specifics. We are working with scanned printed documents
mainly from the second half of the 17th century. They were
printed in different Czech cities (Praha, Litomyšl, Olomouc,
etc.). Not all of the documents are clearly readable - few pages
are torn, or the text is faded out. Also, the typeset is very spe-
cific and different from contemporary documents. Even Czech



native speakers are not able to fluently read such texts if they
are not trained. In figures 1,2,3 we present a few examples that
point out some problematic areas in our dataset. Our dataset
contains hundreds of scanned documents without annotations.
We also dispose of dozens of transcriptions containing similar
language, which we leverage when training the classification
model, as described in section VIII.

Fig. 1: Altough these text are from approximately the same
period, they contain different typesets.

Fig. 2: Character difficulties. a) Ligatures, i.e. two or more
characters printed as one. b) Some glyphs are hard to read
and distinguish when the context is unknown.

IV. OUTLINE OF OUR PIPELINE

As most of OCR systems in use [5]–[8], we developed a
pipelined system in which we solve individual steps indepen-
dently of others. On a high level, we rotate each document
so that lines are horizontally oriented, then we detect all
graphemes in a given document, and finally, we classify each
grapheme in the context of the text it appears in. The schematic
representation of this process is depicted in figure 4. Most
of modern OCR systems do not work by detecting individual
graphemes but transcribe whole lines in an end-to-end fashion.
This approach has the benefit that it does not require annotated

Fig. 3: Difficult pages. a) Some documents are damaged (for
example folded or torn) or the qaulity of scan is low. b) Page
containing an image and faded graphemes of different size.

bounding boxes. In our case, obtaining these bounding boxes
is necessary, so we decided to split the pipeline to grapheme
detection stage and grapheme classification stage. We could
have also tried to classify and detect the graphemes in parallel,
as it is usually done in object detection. By doing so, we would
miss the opportunity to incorporate the structure of the text
into the classification. The detection network would classify
the grapheme as a patch in the image, instead of a grapheme
in the sequence of graphemes. The second minor benefit of
separating these two stages is the fact that we do not need to
annotate the class of every bounding box, as will be described
in section VIII. To obtain a final version of our system, we rely
heavily on synthetic data and other tricks which allow us to
avoid as much manual annotation as possible. Here follows a
description of all the steps we execute during the construction
of our system:
Alignment part

1) Train a neural network NN-rot (VGG-11) to regress
angles of rotated images.

2) Use NN-rot to straighten all images in the dataset.
Detection part

3) Annotate bounding boxes around graphemes in 3 ran-
dom pages.

4) Use the annotated graphemes to generate a large training
set of synthetic images.

5) Pre-train a neural network NN-det to detect graphemes
in synthetic images.

6) Fine-tune NN-det on the 3 annotated real images.
7) Pre-label 6 new pages with NN-det and correct wrong

detections to enlarge the annotated set.
8) Repeat steps 4-7 two more times to increase the vari-

ability of the dataset and to obtain an accurate detection
model.

Classification part
9) Detect few thousands of graphemes in still unlabeled

images using NN-det trained in previous steps.
10) Cut out the detected graphemes and train an autoencoder

to obtain low-dimensional representations for every
grapheme.



Fig. 4: A schematic representation of the pipeline used for every new image. The system first alignes the page according to a
predicted angle from NN-rot; next it detects all graphems on the page with NN-det; these graphemes are parsed into a sequence
which is finally classified by NN-class

11) Cluster the graphemes using K-means based on the
representation from the autoencoder.

12) Create a labeled dataset of graphemes by manually
labeling the clusters and deleting incorrectly assigned
graphemes.

13) Use available transcriptions of texts from the same
period containing the same language to generate training
sequences of cut-out graphemes.

14) Train a convolutional bi-LSTM NN-class to classify
each grapheme in the context of other graphemes using
training examples from step 13.

By following these steps, we avoid manual labeling of
hundreds of pages. Their details will be described in the
subsequent section. At the end, we use NN-rot, NN-det, and
NN-class for every new image.

V. PAGE ALIGNMENT

The scanned documents in our dataset were not always
aligned, and therefore, individual lines were not aligned hori-
zontally. Page alignment is a part of all OCR systems because
when the letters are aligned, the subsequent recognition model
does not need to learn rotation invariance. We decided to train
a neural network to predict the angles from cropped patches
of the image. Fortunately, obtaining a labeled dataset for this
task does not require a lot of manual effort. We manually
aligned 30 pages, and these aligned images are then rotated by
a random angle from an interval -15 to +15 degrees, quantized
to increments of 0.5. Subsequently, crops are taken from
these rotated images, and the rotation angle is saved as their
target label. We train a convolutional network with ResNet-18
backbone [9] to predict these angles, and for every new image,
we average predictions from crops taken from it. We achieve
nearly perfect accuracy (∼98%) with this approach.

VI. SYNTHETIC DATA AND DOMAIN KNOWLEDGE

One of the biggest drawbacks of data-driven approaches
for problem-solving is that they often need a lot of labeled
examples to be trained on. To avoid this problem and save a
lot of manual annotation, we decided to use synthetic data,
which we generate using our understanding of the problem
domain. Synthetic data has been recently used in all kinds
of domains of Computer Vision and Machine Learning in

general [10]–[13], and their use in OCR for modern print
marks one of their first successful use-case [14]. The main
pitfall of using synthetic datasets to train systems for real data
is that the training distribution may be very different from
the testing distribution because, in some domains, it may not
be trivial to synthesize realistic examples (e.g., synthesizing
realistic images of human faces). OCR for modern print was
a successful use-case mainly because it is possible to create
highly realistic synthetic examples using known fonts and
simple image distortions and noise. Creating realistic examples
of old prints is more involved because the variability of the
appearance of graphemes is larger due to all kinds of problems
arising during the printing process (e.g., leakage of ink) and
degradation of documents after long periods. Examples of such
problems can be seen in figures 2 and 3.

After a visual inspection of many real documents, we model
the realism and variability of the page as closely as possible.
For this, we use cut-out examples of various graphemes 1

with background removed and documents containing blank
pages. We generate each page by sampling random words from
which we create whole lines and place them to an empty page.
On each grapheme, we apply a random set of augmentations
simulating fading of the ink, elastic distortion, and various
kinds of noises and scratches. To gain the variability in the
background, we also apply similar augmentations on the few
blank pages we had at our disposal. Also, many documents
contained random drops of ink, which could be possibly
mistaken for a grapheme, and therefore we add such drops
to the background at random positions. An example of a such
generated page can be seen in figure 5. For our experiments,
we created 300 synthetic pages together with ground truth
bounding boxes for every grapheme.

VII. GLYPH DETECTION

As described in section IV, we first detect all graphemes as
one generic class, then we parse the segmented graphemes to
a sequence of these graphemes, and finally, we classify each
grapheme using a sequence-based model. For the detection of
generic graphemes, we use a state-of-the-art model for object

1Synthetic data described in this section are used only to detect generic
graphemes, i.e., to detect a grapheme without classifying it into a class.



Fig. 5: An example of a crop from artificially generated page.
We used different grapheme and background augmentations to
add variability.

detection called RetinaNet [15], which we slightly modify to
suit our task. Object detection models are usually categorized
into one-stage and two-stage methods. As the names suggest,
one-stage methods classify and detect objects in one stage,
whereas two-stage methods first propose a candidate bounding
boxes, which are then refined and classified in the second
stage. One-stage methods are usually faster but less precise
due to the imbalance of positive and negative bounding box
proposals. RetinaNet solves this short-coming of one-stage
methods by using special loss function called Focal Loss [15],
which takes this imbalance into account. Therefore RetinaNet
is a fast and accurate architecture for object detection.

Most of the time, models for object detection use pre-trained
backbones (feature extractors) trained on big classification
datasets such as ImageNet [16]. These backbones extract
already useful features that can be leveraged by subsequent
layers in the network. The pre-trained backbone is most useful
when the pre-training domain is similar to the target domain.
In our case, the images of scanned printed documents are
very different from photographs capturing random objects, and
therefore we do not use a pre-trained backbone but train it from
scratch on our synthetic dataset.

As most of the one-stage detectors, RetinaNet uses anchors
when detecting individual objects. During detection, the image
is divided into a grid of rectangular cells, and inside each
cell, multiple anchors of predefined sizes and proportions are
used to detect possible objects. The final bounding box is
being regressed from each such anchor and classified as a
particular class or as a background. Setting up the sizes and
ratios correctly is an important step. It, for example, does not
make sense to have anchors large in size if we know that there
won’t be large objects within any image. We, therefore, take
special care to set up these sizes and ratios so that they cover
the sizes of graphemes in our dataset. For a more complete
overview of current methods in object detection see [17].

Also, we wanted to retain the resolution of images as high
as possible, and so we cut the whole page into overlapping
patches of size 256x256 px and process each patch separately.
After the system processes all patches from an image, we
merge all boundary boxes in a post-processing stage. We train
the detection model on 300 synthetically generated pages, and

TABLE I: Comparison of average precision (AP) and Focal
loss between the same model (RetinaNet) trained with and
without syntetic images.

Training Data AP Focal Loss

With synthetic data 0.3110 1.143

Without synthetic data 0.03767 2.181

then we fine-tune it on three real and manually labeled pages.
This model already produces quite precise bounding boxes, so
we use it to pre-label six more pages in which we manually
correct wrong predictions. We then enlarge the training set of
synthetic and real images using these newly labeled pages.
We repeat this process two times and thus acquire a model of
satisfying accuracy. In table I, we compare average precision
and Focal loss between the same model trained with and
without synthetic images created from three annotated pages.
As these metrics are not easily interpretable, we show a visual
example in figure 6.

Fig. 6: A visual example of a quality of detection after the first
round using only 3 annotated images. The top image shows
results from a model trained on synthetic images and fine-
tuned on the 3 annotated images. The bottom image shows
results from a model trained only on the 3 annotated images
(with standard augmentations, i.e. resize, lightness, etc.).

VIII. GLYPH CLASSIFICATION

In the last section, we described the model for grapheme
detection. We use this model to detect generic graphemes,
which will be parsed into a sequence where the order of
graphemes is the same as the order in which we would read



the text. These sequences are then classified with a sequence-
based model, which we describe in this section. We use a
sequence-based model because, in some instances, the identity
of a grapheme may not be recognizable without a context.
The sequence-based model can leverage statistical regularities
within sequences of letters found within the use of a language.

First, we need to create a dataset for classification. Again,
we want to avoid manual annotation as much as possible. We
came up with two ways how to achieve it. Our classification
model is convolutional bidirectional LSTM which takes a
sequence of cut-out graphemes and produces a sequence of
labels, one label for each grapheme. Therefore we need to
obtain labeled training examples of such sequences. Our idea
was to use transcriptions of texts which contain a language
being used in our documents. Given these transcripts, we
can create many different training sequences by sampling
graphemes according to the letters in the text. This has an
advantage that using one sentence, we can generate many
different training examples by sampling different examples for
the same letter each time. In order to do this, we need to have
many examples of each letter. To avoid manual annotation of
separate graphemes, we use the detection model to cut-out
thousands of generic graphemes, which we then cluster and
label only the clusters. This lowers the amount of work we
need to do by order of magnitude.

In order to cluster the graphemes, we first train an au-
toencoder with ResNet-18 in the encoder to obtain a low-
dimensional representation of every grapheme. Umap [18]
visualization of this low-dimensional space can be seen in
7. We then cluster all graphemes using a simple K-means
algorithm. We set K to 2*C where C is the number of classes
because when K is close to C, the algorithm mixes too many
examples of different classes together in the same cluster. We
manually check all clusters and remove incorrectly assigned
examples. Thus, we acquire thousands of labeled examples
with very little manual effort. From these, we construct a
dataset of labeled sequences.

Our classification model first extracts low-dimensional (512)
representation of each grapheme by processing it with a
backbone from ResNet-18, and the sequence of these low-
dimensional representations then goes as an input into bidi-
rectional LSTM (with 2 layers, both of which have the output
dimension equal to 512). Finally, the sequence of representa-
tions in the hidden layer of the LSTM is then processed by a
linear layer with a softmax to predict the class of the grapheme
at every position of the sequence.

In table II, we show a comparison between our model,
which takes the context of each grapheme into account and a
model with the same backbone that classifies each grapheme
separately.

IX. RELATED WORK

The OCR problem has been studied for many years [1].
Especially for modern prints, there exist software solutions
with nearly perfect accuracy. Most of these systems use a
pipelined approach such that in one step, individual lines are

Fig. 7: Umap visualization of low-dimensional representation
of cut-out graphemes obtained from a trained autoencoder.

TABLE II: Comparison between a model which classifies
each grapheme separately and a model which takes the ohter
graphemes in the same context into account. Both models
share the same backbone (ResNet-18).

Method Validation Accuracy

With bi-LSTM 0.9337

Without bi-LSTM 0.498

segmented out, and subsequently, they are transcribed into
sequences of letters by a neural network that processes the
whole line as a sequence of vertical strips of pixels. The
number of such strips in a line does not correspond to the
number of letters (labels) in that line, and therefore special
loss function called CTC loss [19] is used to account for the
alignment of these strips and labels. The same loss function is
frequently being used in speech recognition, where the same
problem arises. Examples of systems based on this approach
include Tesseract [7], Calamari [6] build on top of TensorFlow
and OCRopus [5] build on top of PyTorch. We started our
development with OCRopus but soon realized that we need a
custom solution. We have also tried a system called OCR4ALL
[8], which was developed specifically for historical OCR. It
is targeted mostly on people with no coding skills, so the
emphasis is being given mainly on user-friendliness and not
much on customizability. In most of the use-cases, it is not
needed to segment out individual graphemes, and so there is
no need to innovate over these solutions. As mentioned in the
motivation, our use case was quite specific, and therefore we
needed to develop our own solution.

The usefulness of synthetic datasets for training machine
learning models was realized by many [10]–[12]. Synthetic



datasets are especially useful in robotics [13] and other do-
mains where training on real data would be too expensive or
infeasible. The main problem arising with the use of such
datasets is that a machine learning model may overfit to
specifics of synthetic examples and may not transfer well
to real examples. As a possible solution to this problem, a
technique called Domain Randomization became popular in
recent years [20]–[22]. The idea behind Domain Random-
ization is that if we do not want to overfit to particular
properties of data, such as for example color of objects when
training object classifier, we should randomize that property as
much as possible so that the model can not learn a statistical
correlation between this property and some other variables
of interest. We took inspiration in this idea when we were
creating our synthetic dataset and randomized some properties
of the generated images such as the size of graphemes, their
sharpness, and other distortions.

X. CONCLUSION

In this contribution, we described creation of a custom OCR
system explicitly designed to help linguistic analysis of printed
texts from the early modern period. In contrast to mainstream
OCR systems, we do not transcribe whole lines in an end-to-
end fashion, but we first segment out individual graphemes,
which are then classified using a sequence-based model. We
also showed the usefulness of synthetically generated images
and a bootstrapping process for annotation, which reduced
the amount of manual work we needed to do by order of
magnitude. In the future, we aim to design an intuitive user
interface for our system which will be released together
with the final version of the source code. We believe that
our work, driven by the practical needs of linguists, is a
valuable contribution to the interdisciplinary research between
computer science and humanities.

ACKNOWLEDGMENT

The work was supported from ERDF/ESF ”Centre
for the development of Artificial Intelligence Methods
for the Automotive Industry of the region” (No.
CZ.02.1.01/0.0/0.0/17 049/0008414).

REFERENCES

[1] D. Doermann, K. Tombre et al., Handbook of document image process-
ing and recognition. Springer, 2014.

[2] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[3] P. Voitem and J. Linka, “Udržet pravỳ okraj stránkové sazby (od literárnı́
historie k samostudiu),” Česká literatura, vol. 59, no. 2, pp. 242–260,
2011.

[4] R. Čech and J. Mačutek, “Orthography system of broadside ballads
from 17. and 18. century. quantitative approach.” Transformations
of Czech ‘kramářské pı́sně’ (Broadside Ballads) – media, traditions,
contexts. Masaryk University in Brno, 2019.

[5] T. M. Breuel, “The ocropus open source ocr system,” in Document
Recognition and Retrieval XV, vol. 6815. International Society for
Optics and Photonics, 2008, p. 68150F.

[6] C. Wick, C. Reul, and F. Puppe, “Calamari-a high-performance
tensorflow-based deep learning package for optical character recogni-
tion,” arXiv preprint arXiv:1807.02004, 2018.

[7] R. Smith, “An overview of the tesseract ocr engine,” in Ninth Inter-
national Conference on Document Analysis and Recognition (ICDAR
2007), vol. 2. IEEE, 2007, pp. 629–633.

[8] C. Reul, D. Christ, A. Hartelt, N. Balbach, M. Wehner, U. Springmann,
C. Wick, C. Grundig, A. Büttner, and F. Puppe, “Ocr4all—an open-
source tool providing a (semi-) automatic ocr workflow for historical
printings,” Applied Sciences, vol. 9, no. 22, p. 4853, 2019.

[9] S. Wu, S. Zhong, and Y. Liu, “Deep residual learning for image
steganalysis,” Multimedia tools and applications, vol. 77, no. 9, pp.
10 437–10 453, 2018.

[10] J. Hula, I. Perfilieva, and A. A. M. Muzaheed, “Towards visual training
set generation framework,” in International Work-Conference on Artifi-
cial Neural Networks. Springer, 2017, pp. 747–758.

[11] S. Sankaranarayanan, Y. Balaji, A. Jain, S. Nam Lim, and R. Chellappa,
“Learning from synthetic data: Addressing domain shift for semantic
segmentation,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 3752–3761.

[12] S. R. Richter, V. Vineet, S. Roth, and V. Koltun, “Playing for data:
Ground truth from computer games,” in European conference on com-
puter vision. Springer, 2016, pp. 102–118.

[13] P. Martinez-Gonzalez, S. Oprea, A. Garcia-Garcia, A. Jover-Alvarez,
S. Orts-Escolano, and J. Garcia-Rodriguez, “Unrealrox: an extremely
photorealistic virtual reality environment for robotics simulations and
synthetic data generation,” Virtual Reality, pp. 1–18, 2019.

[14] T. K. Ho and H. S. Baird, “Evaluation of ocr accuracy using synthetic
data,” in Proceedings of the 4th Annual Symposium on Document
Analysis and Information Retrieval. Citeseer, 1995.

[15] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2980–2988.

[16] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[17] L. Jiao, F. Zhang, F. Liu, S. Yang, L. Li, Z. Feng, and R. Qu, “A
survey of deep learning-based object detection,” IEEE Access, vol. 7,
pp. 128 837–128 868, 2019.

[18] L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold
approximation and projection for dimension reduction,” arXiv preprint
arXiv:1802.03426, 2018.

[19] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connection-
ist temporal classification: labelling unsegmented sequence data with
recurrent neural networks,” in Proceedings of the 23rd international
conference on Machine learning, 2006, pp. 369–376.

[20] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in 2017 IEEE/RSJ international conference
on intelligent robots and systems (IROS). IEEE, 2017, pp. 23–30.

[21] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-real
transfer of robotic control with dynamics randomization,” in 2018 IEEE
international conference on robotics and automation (ICRA). IEEE,
2018, pp. 1–8.

[22] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakrish-
nan, L. Downs, J. Ibarz, P. Pastor, K. Konolige et al., “Using simulation
and domain adaptation to improve efficiency of deep robotic grasping,”
in 2018 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2018, pp. 4243–4250.


